If it's not what You are looking for type in the equation solver your own equation and let us solve it.
10n^2-2=0
a = 10; b = 0; c = -2;
Δ = b2-4ac
Δ = 02-4·10·(-2)
Δ = 80
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$n_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$n_{2}=\frac{-b+\sqrt{\Delta}}{2a}$
The end solution:
$\sqrt{\Delta}=\sqrt{80}=\sqrt{16*5}=\sqrt{16}*\sqrt{5}=4\sqrt{5}$$n_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(0)-4\sqrt{5}}{2*10}=\frac{0-4\sqrt{5}}{20} =-\frac{4\sqrt{5}}{20} =-\frac{\sqrt{5}}{5} $$n_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(0)+4\sqrt{5}}{2*10}=\frac{0+4\sqrt{5}}{20} =\frac{4\sqrt{5}}{20} =\frac{\sqrt{5}}{5} $
| 14+y/6=16 | | 61=19^x | | 58=7r+5 | | N+2=3n-4n+10 | | |x-2|=6x+18 | | -2/3x-10=12 | | 96=6(b-4) | | 4a^2+25a=21 | | (3x-4)^2=17 | | 10+16x+23=8-x | | -7/2x+13=1/2(-x+2) | | 28=-(7/6)y | | -15-5d=-d-3 | | 10-10p=-10p+9 | | -5x^2+12=2x | | 3.2=4.2-0.5x | | 5=4/3+4/3b | | (5x-17)/(-4)=-7 | | (x/4)+(x/9)=(9/8) | | r+(-8)=0 | | 2(x-1)=7x+3-4x | | 16x-4=96 | | 7r^2+1=414 | | 8x+24x-10=8(4x+9) | | 1-4m+1=14-7m | | 12x+3−4x+7= | | 2-1/3(9x-12)=-24 | | 3x-50=35 | | 7v^2+2=492 | | 5(x-3)-15=2x | | 2(y-2)(y-2)-(y-5)(y+3)=(y-1)(y-1)+2 | | 91=7(5+n) |